Balanced permutations Even-Mansour ciphers

نویسندگان

  • Shoni Gilboa
  • Shay Gueron
چکیده

The r-rounds Even–Mansour block cipher is a generalization of the well known Even–Mansour block cipher to r iterations. Attacks on this construction were described by Nikolić et al. and Dinur et al. for r = 2, 3. These attacks are only marginally better than brute force but are based on an interesting observation (due to Nikolić et al.): for a “typical” permutation P, the distribution of P(x)⊕ x is not uniform. This naturally raises the following question. Let us call permutations for which the distribution of P(x)⊕ x is uniformly “balanced” — is there a sufficiently large family of balanced permutations, and what is the security of the resulting Even–Mansour block cipher? We show how to generate families of balanced permutations from the Luby–Rackoff construction and use them to define a 2n-bit block cipher from the 2-round Even–Mansour scheme. We prove that this cipher is indistinguishable from a random permutation of {0, 1}2n, for any adversary who has oracle access to the public permutations and to an encryption/decryption oracle, as long as the number of queries is o(2n/2). As a practical example, we discuss the properties and the performance of a 256-bit block cipher that is based on our construction, and uses the Advanced Encryption Standard (AES), with a fixed key, as the public permutation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Understanding the Known-Key Security of Block Ciphers

Known-key distinguishers for block ciphers were proposed by Knudsen and Rijmen at ASIACRYPT 2007 and have been a major research topic in cryptanalysis since then. A formalization of known-key attacks in general is known to be difficult. In this paper, we tackle this problem for the case of block ciphers based on ideal components such as random permutations and random functions as well as propos...

متن کامل

Security of Even-Mansour Ciphers under Key-Dependent Messages

The iterated Even–Mansour (EM) ciphers form the basis of many blockcipher designs. Several results have established their security in the CPA/CCA models, under related-key attacks, and in the indifferentiability framework. In this work, we study the Even–Mansour ciphers under key-dependent message (KDM) attacks. KDM security is particularly relevant for blockciphers since non-expanding mechanis...

متن کامل

New Key Recovery Attacks on Minimal Two-Round Even-Mansour Ciphers

We propose new key recovery attacks on the two minimal two-round n-bit Even-Mansour ciphers that are secure up to 2 queries against distinguishing attacks proved by Chen et al. Our attacks are based on the meet-in-the-middle technique which can significantly reduce the data complexity. In particular, we introduce novel matching techniques which enable us to compute one of the two permutations w...

متن کامل

A note on APN permutations in even dimension

APN permutations in even dimension are vectorial Boolean functions that play a special role in the design of block ciphers. We study their properties, providing some general results and some applications to the low-dimension cases. In particular, we prove that none of their components can be quadratic. For an APN vectorial Boolean function (in even dimension) with all cubic components we prove ...

متن کامل

Beyond-Birthday-Bound Security for Tweakable Even-Mansour Ciphers with Linear Tweak and Key Mixing

The iterated Even-Mansour construction defines a block cipher from a tuple of public n-bit permutations (P1, . . . , Pr) by alternatively xoring some n-bit round key ki, i = 0, . . . , r, and applying permutation Pi to the state. The tweakable Even-Mansour construction generalizes the conventional Even-Mansour construction by replacing the n-bit round keys by n-bit strings derived from a master...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014